Cremona's table of elliptic curves

Curve 30912bo1

30912 = 26 · 3 · 7 · 23



Data for elliptic curve 30912bo1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 23+ Signs for the Atkin-Lehner involutions
Class 30912bo Isogeny class
Conductor 30912 Conductor
∏ cp 5 Product of Tamagawa factors cp
deg 21120 Modular degree for the optimal curve
Δ -39262227648 = -1 · 26 · 3 · 75 · 233 Discriminant
Eigenvalues 2- 3+ -2 7- -3  4  2  1 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-19,-9527] [a1,a2,a3,a4,a6]
Generators [32:147:1] Generators of the group modulo torsion
j -12487168/613472307 j-invariant
L 3.9570891488857 L(r)(E,1)/r!
Ω 0.52509625058485 Real period
R 1.5071862137573 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 30912cc1 15456s1 92736fl1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations