Cremona's table of elliptic curves

Curve 31152z4

31152 = 24 · 3 · 11 · 59



Data for elliptic curve 31152z4

Field Data Notes
Atkin-Lehner 2- 3- 11+ 59- Signs for the Atkin-Lehner involutions
Class 31152z Isogeny class
Conductor 31152 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ 7974912 = 212 · 3 · 11 · 59 Discriminant
Eigenvalues 2- 3- -2  0 11+  2 -2  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-166144,26010740] [a1,a2,a3,a4,a6]
j 123828429385748737/1947 j-invariant
L 2.3923888662748 L(r)(E,1)/r!
Ω 1.1961944331389 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 1947c3 124608cl4 93456bq4 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations