Cremona's table of elliptic curves

Curve 31248bm1

31248 = 24 · 32 · 7 · 31



Data for elliptic curve 31248bm1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 31+ Signs for the Atkin-Lehner involutions
Class 31248bm Isogeny class
Conductor 31248 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 193536 Modular degree for the optimal curve
Δ -37636665915211776 = -1 · 219 · 39 · 76 · 31 Discriminant
Eigenvalues 2- 3- -3 7+ -3 -1 -3  1 Hecke eigenvalues for primes up to 20
Equation [0,0,0,10581,9324506] [a1,a2,a3,a4,a6]
Generators [295:6174:1] Generators of the group modulo torsion
j 43874924183/12604443264 j-invariant
L 3.2938372535479 L(r)(E,1)/r!
Ω 0.28281176947655 Real period
R 1.4558434306165 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 3906w1 124992eq1 10416q1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations