Cremona's table of elliptic curves

Curve 31248ck1

31248 = 24 · 32 · 7 · 31



Data for elliptic curve 31248ck1

Field Data Notes
Atkin-Lehner 2- 3- 7- 31- Signs for the Atkin-Lehner involutions
Class 31248ck Isogeny class
Conductor 31248 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 46080 Modular degree for the optimal curve
Δ -888999100416 = -1 · 214 · 36 · 74 · 31 Discriminant
Eigenvalues 2- 3- -2 7- -6  4 -2  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-4611,128770] [a1,a2,a3,a4,a6]
Generators [33:-112:1] Generators of the group modulo torsion
j -3630961153/297724 j-invariant
L 4.4240391552659 L(r)(E,1)/r!
Ω 0.86884952540029 Real period
R 0.63647948032599 Regulator
r 1 Rank of the group of rational points
S 0.99999999999997 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 3906c1 124992gv1 3472g1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations