Cremona's table of elliptic curves

Curve 31365c3

31365 = 32 · 5 · 17 · 41



Data for elliptic curve 31365c3

Field Data Notes
Atkin-Lehner 3- 5+ 17- 41+ Signs for the Atkin-Lehner involutions
Class 31365c Isogeny class
Conductor 31365 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -19529936897071005 = -1 · 314 · 5 · 172 · 414 Discriminant
Eigenvalues  1 3- 5+  0  0  2 17-  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,43830,-5732339] [a1,a2,a3,a4,a6]
Generators [1533590:59785403:1000] Generators of the group modulo torsion
j 12773356170864479/26790036895845 j-invariant
L 5.8582625432458 L(r)(E,1)/r!
Ω 0.20055482633486 Real period
R 7.3025698886253 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 10455b4 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations