Cremona's table of elliptic curves

Curve 32448c2

32448 = 26 · 3 · 132



Data for elliptic curve 32448c2

Field Data Notes
Atkin-Lehner 2+ 3+ 13+ Signs for the Atkin-Lehner involutions
Class 32448c Isogeny class
Conductor 32448 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 120284389195776 = 214 · 32 · 138 Discriminant
Eigenvalues 2+ 3+  2  0  0 13+  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-35377,-2494415] [a1,a2,a3,a4,a6]
Generators [-12480:22517:125] Generators of the group modulo torsion
j 61918288/1521 j-invariant
L 5.3878174307319 L(r)(E,1)/r!
Ω 0.34863306239435 Real period
R 7.7270603564237 Regulator
r 1 Rank of the group of rational points
S 0.99999999999999 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 32448da2 4056f2 97344by2 2496c2 Quadratic twists by: -4 8 -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations