Cremona's table of elliptic curves

Curve 3264x4

3264 = 26 · 3 · 17



Data for elliptic curve 3264x4

Field Data Notes
Atkin-Lehner 2- 3- 17+ Signs for the Atkin-Lehner involutions
Class 3264x Isogeny class
Conductor 3264 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -262414863320481792 = -1 · 227 · 34 · 176 Discriminant
Eigenvalues 2- 3-  0 -2  0 -2 17+ -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,115807,19464159] [a1,a2,a3,a4,a6]
Generators [583:16896:1] Generators of the group modulo torsion
j 655215969476375/1001033261568 j-invariant
L 3.8377747567711 L(r)(E,1)/r!
Ω 0.21109560509857 Real period
R 2.2725335488268 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 3264a4 816e4 9792bw4 81600gk4 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations