Cremona's table of elliptic curves

Curve 33088g1

33088 = 26 · 11 · 47



Data for elliptic curve 33088g1

Field Data Notes
Atkin-Lehner 2+ 11+ 47+ Signs for the Atkin-Lehner involutions
Class 33088g Isogeny class
Conductor 33088 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 168960 Modular degree for the optimal curve
Δ -5828799021056 = -1 · 214 · 115 · 472 Discriminant
Eigenvalues 2+  3  1 -4 11+  4  0  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-27472,1756448] [a1,a2,a3,a4,a6]
Generators [30534:180433:216] Generators of the group modulo torsion
j -139950548941824/355761659 j-invariant
L 9.6187700975155 L(r)(E,1)/r!
Ω 0.76031943132665 Real period
R 6.3254795952878 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 33088bn1 4136b1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations