Cremona's table of elliptic curves

Curve 33150bw4

33150 = 2 · 3 · 52 · 13 · 17



Data for elliptic curve 33150bw4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 13+ 17+ Signs for the Atkin-Lehner involutions
Class 33150bw Isogeny class
Conductor 33150 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 91038187500 = 22 · 3 · 56 · 134 · 17 Discriminant
Eigenvalues 2- 3- 5+  0  0 13+ 17+  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-27288,1732692] [a1,a2,a3,a4,a6]
Generators [152:974:1] Generators of the group modulo torsion
j 143820170742457/5826444 j-invariant
L 10.648689579281 L(r)(E,1)/r!
Ω 1.0063036863419 Real period
R 2.6454960177057 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 99450v4 1326b4 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations