Cremona's table of elliptic curves

Curve 33201m1

33201 = 32 · 7 · 17 · 31



Data for elliptic curve 33201m1

Field Data Notes
Atkin-Lehner 3- 7- 17- 31+ Signs for the Atkin-Lehner involutions
Class 33201m Isogeny class
Conductor 33201 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 92160 Modular degree for the optimal curve
Δ 288256115836017 = 314 · 7 · 172 · 313 Discriminant
Eigenvalues -1 3-  0 7-  0 -2 17-  2 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-34970,2389520] [a1,a2,a3,a4,a6]
j 6487411372737625/395413053273 j-invariant
L 1.0774011932466 L(r)(E,1)/r!
Ω 0.53870059662866 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 11067i1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations