Cremona's table of elliptic curves

Curve 33600cd1

33600 = 26 · 3 · 52 · 7



Data for elliptic curve 33600cd1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7+ Signs for the Atkin-Lehner involutions
Class 33600cd Isogeny class
Conductor 33600 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 442368 Modular degree for the optimal curve
Δ 24772608000000000 = 226 · 33 · 59 · 7 Discriminant
Eigenvalues 2+ 3- 5+ 7+  0  2  6 -8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-796033,272996063] [a1,a2,a3,a4,a6]
j 13619385906841/6048000 j-invariant
L 2.2325612126842 L(r)(E,1)/r!
Ω 0.3720935354488 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 33600ey1 1050k1 100800cy1 6720f1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations