Cremona's table of elliptic curves

Curve 3360g1

3360 = 25 · 3 · 5 · 7



Data for elliptic curve 3360g1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 7- Signs for the Atkin-Lehner involutions
Class 3360g Isogeny class
Conductor 3360 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 1536 Modular degree for the optimal curve
Δ 2800526400 = 26 · 36 · 52 · 74 Discriminant
Eigenvalues 2+ 3+ 5- 7-  0  2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-890,10200] [a1,a2,a3,a4,a6]
Generators [-20:140:1] Generators of the group modulo torsion
j 1219555693504/43758225 j-invariant
L 3.2531235714726 L(r)(E,1)/r!
Ω 1.4230781720763 Real period
R 1.1429883597773 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 3360v1 6720s2 10080bp1 16800br1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations