Cremona's table of elliptic curves

Curve 33856bp1

33856 = 26 · 232



Data for elliptic curve 33856bp1

Field Data Notes
Atkin-Lehner 2- 23- Signs for the Atkin-Lehner involutions
Class 33856bp Isogeny class
Conductor 33856 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 202752 Modular degree for the optimal curve
Δ -3486541257728 = -1 · 210 · 237 Discriminant
Eigenvalues 2-  3  0 -2  0  5  6 -6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-116380,-15281752] [a1,a2,a3,a4,a6]
Generators [48587406288363:-938358898401655:80118732231] Generators of the group modulo torsion
j -1149984000/23 j-invariant
L 10.08457234493 L(r)(E,1)/r!
Ω 0.12924074405673 Real period
R 19.507339613627 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 33856u1 8464j1 1472k1 Quadratic twists by: -4 8 -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations