Cremona's table of elliptic curves

Curve 33915d4

33915 = 3 · 5 · 7 · 17 · 19



Data for elliptic curve 33915d4

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 17+ 19- Signs for the Atkin-Lehner involutions
Class 33915d Isogeny class
Conductor 33915 Conductor
∏ cp 48 Product of Tamagawa factors cp
Δ 34402311718777485 = 34 · 5 · 712 · 17 · 192 Discriminant
Eigenvalues -1 3+ 5+ 7-  0  2 17+ 19- Hecke eigenvalues for primes up to 20
Equation [1,1,1,-13258371,-18587133252] [a1,a2,a3,a4,a6]
Generators [-2103:1089:1] Generators of the group modulo torsion
j 257747354512165746645118129/34402311718777485 j-invariant
L 2.8285082625094 L(r)(E,1)/r!
Ω 0.079118312578395 Real period
R 2.979196777512 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 101745bl4 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations