Cremona's table of elliptic curves

Curve 33936c1

33936 = 24 · 3 · 7 · 101



Data for elliptic curve 33936c1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 101+ Signs for the Atkin-Lehner involutions
Class 33936c Isogeny class
Conductor 33936 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 51840 Modular degree for the optimal curve
Δ -10512918872064 = -1 · 215 · 33 · 76 · 101 Discriminant
Eigenvalues 2- 3+ -1 7-  2 -2  0  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-9616,398272] [a1,a2,a3,a4,a6]
Generators [-24:784:1] Generators of the group modulo torsion
j -24010007244049/2566630584 j-invariant
L 4.5819696575238 L(r)(E,1)/r!
Ω 0.70307455557166 Real period
R 0.2715436092572 Regulator
r 1 Rank of the group of rational points
S 0.99999999999999 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 4242c1 101808y1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations