Cremona's table of elliptic curves

Curve 34385i1

34385 = 5 · 13 · 232



Data for elliptic curve 34385i1

Field Data Notes
Atkin-Lehner 5- 13+ 23- Signs for the Atkin-Lehner involutions
Class 34385i Isogeny class
Conductor 34385 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 23760 Modular degree for the optimal curve
Δ 9622332785 = 5 · 13 · 236 Discriminant
Eigenvalues -1 -2 5-  4 -2 13+ -2  6 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-540,-1073] [a1,a2,a3,a4,a6]
Generators [167:2055:1] Generators of the group modulo torsion
j 117649/65 j-invariant
L 2.7479767088965 L(r)(E,1)/r!
Ω 1.0603076578917 Real period
R 5.1833572802068 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 65a1 Quadratic twists by: -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations