Cremona's table of elliptic curves

Curve 3450i4

3450 = 2 · 3 · 52 · 23



Data for elliptic curve 3450i4

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 23- Signs for the Atkin-Lehner involutions
Class 3450i Isogeny class
Conductor 3450 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 4715718750 = 2 · 38 · 56 · 23 Discriminant
Eigenvalues 2+ 3- 5+  0  0  2 -2 -8 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-6176,186248] [a1,a2,a3,a4,a6]
Generators [12:331:1] Generators of the group modulo torsion
j 1666957239793/301806 j-invariant
L 3.10109324268 L(r)(E,1)/r!
Ω 1.3306668521554 Real period
R 0.29131007111744 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 27600be4 110400v4 10350bg3 138c4 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations