Cremona's table of elliptic curves

Curve 34800dl3

34800 = 24 · 3 · 52 · 29



Data for elliptic curve 34800dl3

Field Data Notes
Atkin-Lehner 2- 3- 5+ 29- Signs for the Atkin-Lehner involutions
Class 34800dl Isogeny class
Conductor 34800 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ -254621160000000000 = -1 · 212 · 32 · 510 · 294 Discriminant
Eigenvalues 2- 3- 5+ -4  0 -6 -2 -8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-156008,33887988] [a1,a2,a3,a4,a6]
Generators [3434:-54375:8] [148:-3750:1] Generators of the group modulo torsion
j -6561258219361/3978455625 j-invariant
L 9.1564450224737 L(r)(E,1)/r!
Ω 0.28817210845931 Real period
R 1.9858889778204 Regulator
r 2 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 2175b4 104400ef3 6960be4 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations