Cremona's table of elliptic curves

Curve 3504r1

3504 = 24 · 3 · 73



Data for elliptic curve 3504r1

Field Data Notes
Atkin-Lehner 2- 3+ 73- Signs for the Atkin-Lehner involutions
Class 3504r Isogeny class
Conductor 3504 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 864 Modular degree for the optimal curve
Δ -8073216 = -1 · 212 · 33 · 73 Discriminant
Eigenvalues 2- 3+ -3  4  0 -4  3  1 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,43,-99] [a1,a2,a3,a4,a6]
Generators [4:11:1] Generators of the group modulo torsion
j 2097152/1971 j-invariant
L 2.7446232284096 L(r)(E,1)/r!
Ω 1.2758900028376 Real period
R 2.1511440816258 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 219b1 14016cd1 10512x1 87600cg1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations