Cremona's table of elliptic curves

Curve 35088o1

35088 = 24 · 3 · 17 · 43



Data for elliptic curve 35088o1

Field Data Notes
Atkin-Lehner 2- 3+ 17- 43- Signs for the Atkin-Lehner involutions
Class 35088o Isogeny class
Conductor 35088 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 46080 Modular degree for the optimal curve
Δ 375433740288 = 214 · 36 · 17 · 432 Discriminant
Eigenvalues 2- 3+  2  2  6  2 17-  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-3672,81648] [a1,a2,a3,a4,a6]
j 1337180541913/91658628 j-invariant
L 3.7386665325056 L(r)(E,1)/r!
Ω 0.93466663313027 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4386h1 105264bl1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations