Cremona's table of elliptic curves

Curve 35650a1

35650 = 2 · 52 · 23 · 31



Data for elliptic curve 35650a1

Field Data Notes
Atkin-Lehner 2+ 5+ 23+ 31+ Signs for the Atkin-Lehner involutions
Class 35650a Isogeny class
Conductor 35650 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 55680 Modular degree for the optimal curve
Δ -390834087200 = -1 · 25 · 52 · 232 · 314 Discriminant
Eigenvalues 2+ -1 5+  4 -1 -2 -7  7 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-265,-30235] [a1,a2,a3,a4,a6]
Generators [3476:20365:64] Generators of the group modulo torsion
j -82809375745/15633363488 j-invariant
L 3.5694163480232 L(r)(E,1)/r!
Ω 0.42323689055135 Real period
R 2.1084033715569 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 35650r1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations