Cremona's table of elliptic curves

Curve 36075h1

36075 = 3 · 52 · 13 · 37



Data for elliptic curve 36075h1

Field Data Notes
Atkin-Lehner 3+ 5+ 13- 37- Signs for the Atkin-Lehner involutions
Class 36075h Isogeny class
Conductor 36075 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 4416 Modular degree for the optimal curve
Δ -36075 = -1 · 3 · 52 · 13 · 37 Discriminant
Eigenvalues -1 3+ 5+ -4 -1 13-  6  5 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-58,146] [a1,a2,a3,a4,a6]
Generators [4:-2:1] Generators of the group modulo torsion
j -864043465/1443 j-invariant
L 2.3517026656706 L(r)(E,1)/r!
Ω 3.6623432146091 Real period
R 0.64213060542483 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 108225bd1 36075w1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations