Cremona's table of elliptic curves

Curve 36800dg1

36800 = 26 · 52 · 23



Data for elliptic curve 36800dg1

Field Data Notes
Atkin-Lehner 2- 5- 23+ Signs for the Atkin-Lehner involutions
Class 36800dg Isogeny class
Conductor 36800 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 61440 Modular degree for the optimal curve
Δ 588800000000 = 216 · 58 · 23 Discriminant
Eigenvalues 2-  2 5-  1 -5  1  4  7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-8833,-314463] [a1,a2,a3,a4,a6]
Generators [-57:24:1] Generators of the group modulo torsion
j 2977540/23 j-invariant
L 8.4335240576058 L(r)(E,1)/r!
Ω 0.49268651285758 Real period
R 2.852904039897 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 36800bu1 9200m1 36800cx1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations