Cremona's table of elliptic curves

Curve 36850r1

36850 = 2 · 52 · 11 · 67



Data for elliptic curve 36850r1

Field Data Notes
Atkin-Lehner 2- 5+ 11+ 67+ Signs for the Atkin-Lehner involutions
Class 36850r Isogeny class
Conductor 36850 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 96000 Modular degree for the optimal curve
Δ -123447500000 = -1 · 25 · 57 · 11 · 672 Discriminant
Eigenvalues 2- -3 5+ -3 11+ -4  7 -1 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,870,13497] [a1,a2,a3,a4,a6]
Generators [-11:55:1] [5:-137:1] Generators of the group modulo torsion
j 4665834711/7900640 j-invariant
L 7.7045990541386 L(r)(E,1)/r!
Ω 0.71534885239142 Real period
R 0.26926020180168 Regulator
r 2 Rank of the group of rational points
S 0.99999999999977 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 7370a1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations