Cremona's table of elliptic curves

Curve 36894ba1

36894 = 2 · 3 · 11 · 13 · 43



Data for elliptic curve 36894ba1

Field Data Notes
Atkin-Lehner 2- 3- 11+ 13+ 43+ Signs for the Atkin-Lehner involutions
Class 36894ba Isogeny class
Conductor 36894 Conductor
∏ cp 20 Product of Tamagawa factors cp
deg 30720 Modular degree for the optimal curve
Δ -19343081472 = -1 · 220 · 3 · 11 · 13 · 43 Discriminant
Eigenvalues 2- 3-  2  0 11+ 13+ -2  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,43,-6687] [a1,a2,a3,a4,a6]
Generators [1686:12397:27] Generators of the group modulo torsion
j 8780064047/19343081472 j-invariant
L 12.167864296776 L(r)(E,1)/r!
Ω 0.56641467098271 Real period
R 4.2964509643317 Regulator
r 1 Rank of the group of rational points
S 0.99999999999998 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 110682u1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations