Cremona's table of elliptic curves

Curve 37128z1

37128 = 23 · 3 · 7 · 13 · 17



Data for elliptic curve 37128z1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 13+ 17+ Signs for the Atkin-Lehner involutions
Class 37128z Isogeny class
Conductor 37128 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 4224 Modular degree for the optimal curve
Δ 668304 = 24 · 33 · 7 · 13 · 17 Discriminant
Eigenvalues 2- 3-  1 7+  0 13+ 17+ -1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-40,77] [a1,a2,a3,a4,a6]
Generators [2:3:1] Generators of the group modulo torsion
j 453519616/41769 j-invariant
L 7.3394066347582 L(r)(E,1)/r!
Ω 2.7962384589704 Real period
R 0.43745712573332 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 74256l1 111384o1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations