Cremona's table of elliptic curves

Curve 37200bf1

37200 = 24 · 3 · 52 · 31



Data for elliptic curve 37200bf1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 31+ Signs for the Atkin-Lehner involutions
Class 37200bf Isogeny class
Conductor 37200 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 6912 Modular degree for the optimal curve
Δ 9523200 = 212 · 3 · 52 · 31 Discriminant
Eigenvalues 2- 3+ 5+  0  3 -4  7 -3 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-53,-3] [a1,a2,a3,a4,a6]
j 163840/93 j-invariant
L 1.9074861592494 L(r)(E,1)/r!
Ω 1.9074861592584 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2325g1 111600dl1 37200dl1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations