Cremona's table of elliptic curves

Curve 3870j3

3870 = 2 · 32 · 5 · 43



Data for elliptic curve 3870j3

Field Data Notes
Atkin-Lehner 2+ 3- 5- 43- Signs for the Atkin-Lehner involutions
Class 3870j Isogeny class
Conductor 3870 Conductor
∏ cp 18 Product of Tamagawa factors cp
Δ -122449218750 = -1 · 2 · 36 · 59 · 43 Discriminant
Eigenvalues 2+ 3- 5- -1  6  5  6 -7 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-50634,4398138] [a1,a2,a3,a4,a6]
j -19693718244927649/167968750 j-invariant
L 1.8822590400875 L(r)(E,1)/r!
Ω 0.94112952004377 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 3 Number of elements in the torsion subgroup
Twists 30960bv3 123840bj3 430c3 19350bx3 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations