Cremona's table of elliptic curves

Curve 38766be1

38766 = 2 · 3 · 7 · 13 · 71



Data for elliptic curve 38766be1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 13- 71- Signs for the Atkin-Lehner involutions
Class 38766be Isogeny class
Conductor 38766 Conductor
∏ cp 224 Product of Tamagawa factors cp
deg 86016 Modular degree for the optimal curve
Δ -7914188685312 = -1 · 214 · 34 · 7 · 132 · 712 Discriminant
Eigenvalues 2- 3-  0 7+ -4 13-  8  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-1033,-136039] [a1,a2,a3,a4,a6]
Generators [122:-1309:1] Generators of the group modulo torsion
j -121913262276625/7914188685312 j-invariant
L 10.520114319825 L(r)(E,1)/r!
Ω 0.32530906085179 Real period
R 0.57747910184446 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 116298d1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations