Cremona's table of elliptic curves

Curve 38808r1

38808 = 23 · 32 · 72 · 11



Data for elliptic curve 38808r1

Field Data Notes
Atkin-Lehner 2+ 3- 7- 11+ Signs for the Atkin-Lehner involutions
Class 38808r Isogeny class
Conductor 38808 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 36864 Modular degree for the optimal curve
Δ -866214817776 = -1 · 24 · 315 · 73 · 11 Discriminant
Eigenvalues 2+ 3-  1 7- 11+  1 -4  1 Hecke eigenvalues for primes up to 20
Equation [0,0,0,2373,5047] [a1,a2,a3,a4,a6]
Generators [71:729:1] Generators of the group modulo torsion
j 369381632/216513 j-invariant
L 6.0912595368492 L(r)(E,1)/r!
Ω 0.53873319915994 Real period
R 0.7066646749201 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 77616cc1 12936z1 38808s1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations