Cremona's table of elliptic curves

Curve 39585c1

39585 = 3 · 5 · 7 · 13 · 29



Data for elliptic curve 39585c1

Field Data Notes
Atkin-Lehner 3+ 5+ 7+ 13- 29+ Signs for the Atkin-Lehner involutions
Class 39585c Isogeny class
Conductor 39585 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 62208 Modular degree for the optimal curve
Δ -514417169175 = -1 · 3 · 52 · 72 · 136 · 29 Discriminant
Eigenvalues -1 3+ 5+ 7+ -4 13- -6 -2 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-5081,141494] [a1,a2,a3,a4,a6]
Generators [-31:535:1] [8:314:1] Generators of the group modulo torsion
j -14506967529604369/514417169175 j-invariant
L 4.3196924704585 L(r)(E,1)/r!
Ω 0.92261717405699 Real period
R 0.78033312767257 Regulator
r 2 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 118755n1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations