Cremona's table of elliptic curves

Curve 39585h4

39585 = 3 · 5 · 7 · 13 · 29



Data for elliptic curve 39585h4

Field Data Notes
Atkin-Lehner 3+ 5- 7+ 13- 29- Signs for the Atkin-Lehner involutions
Class 39585h Isogeny class
Conductor 39585 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ 86572395 = 38 · 5 · 7 · 13 · 29 Discriminant
Eigenvalues -1 3+ 5- 7+  0 13- -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-70375,7156490] [a1,a2,a3,a4,a6]
Generators [159:55:1] [1870:14127:8] Generators of the group modulo torsion
j 38546000384662134001/86572395 j-invariant
L 5.3238190335197 L(r)(E,1)/r!
Ω 1.2512799023951 Real period
R 8.5093974950427 Regulator
r 2 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 118755b4 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations