Cremona's table of elliptic curves

Curve 39600dn1

39600 = 24 · 32 · 52 · 11



Data for elliptic curve 39600dn1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 11+ Signs for the Atkin-Lehner involutions
Class 39600dn Isogeny class
Conductor 39600 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 20736 Modular degree for the optimal curve
Δ -1642291200 = -1 · 213 · 36 · 52 · 11 Discriminant
Eigenvalues 2- 3- 5+ -4 11+ -5  0  7 Hecke eigenvalues for primes up to 20
Equation [0,0,0,285,610] [a1,a2,a3,a4,a6]
Generators [-1:18:1] Generators of the group modulo torsion
j 34295/22 j-invariant
L 4.034826563795 L(r)(E,1)/r!
Ω 0.93383892260933 Real period
R 1.0801719831188 Regulator
r 1 Rank of the group of rational points
S 1.0000000000003 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 4950p1 4400u1 39600er1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations