Cremona's table of elliptic curves

Curve 40128bg1

40128 = 26 · 3 · 11 · 19



Data for elliptic curve 40128bg1

Field Data Notes
Atkin-Lehner 2- 3+ 11+ 19+ Signs for the Atkin-Lehner involutions
Class 40128bg Isogeny class
Conductor 40128 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 14336 Modular degree for the optimal curve
Δ -53410368 = -1 · 26 · 3 · 114 · 19 Discriminant
Eigenvalues 2- 3+ -2 -4 11+  2 -2 19+ Hecke eigenvalues for primes up to 20
Equation [0,-1,0,36,330] [a1,a2,a3,a4,a6]
Generators [11:44:1] [31:174:1] Generators of the group modulo torsion
j 78402752/834537 j-invariant
L 6.2071701180247 L(r)(E,1)/r!
Ω 1.4672366086377 Real period
R 8.4610349571198 Regulator
r 2 Rank of the group of rational points
S 0.99999999999998 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 40128cf1 20064m4 120384dj1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations