Cremona's table of elliptic curves

Curve 40180g1

40180 = 22 · 5 · 72 · 41



Data for elliptic curve 40180g1

Field Data Notes
Atkin-Lehner 2- 5- 7- 41+ Signs for the Atkin-Lehner involutions
Class 40180g Isogeny class
Conductor 40180 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 252672 Modular degree for the optimal curve
Δ -145957950553506560 = -1 · 28 · 5 · 79 · 414 Discriminant
Eigenvalues 2- -1 5- 7-  3 -3 -1 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-81405,20466937] [a1,a2,a3,a4,a6]
j -5775106048/14128805 j-invariant
L 1.1540010652713 L(r)(E,1)/r!
Ω 0.28850026631226 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 40180d1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations