Cremona's table of elliptic curves

Curve 40194x1

40194 = 2 · 32 · 7 · 11 · 29



Data for elliptic curve 40194x1

Field Data Notes
Atkin-Lehner 2+ 3- 7- 11- 29- Signs for the Atkin-Lehner involutions
Class 40194x Isogeny class
Conductor 40194 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 71680 Modular degree for the optimal curve
Δ 1015157670912 = 210 · 37 · 72 · 11 · 292 Discriminant
Eigenvalues 2+ 3-  0 7- 11-  4  2  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-3087,-44051] [a1,a2,a3,a4,a6]
Generators [-34:161:1] Generators of the group modulo torsion
j 4463599344625/1392534528 j-invariant
L 4.6074480468104 L(r)(E,1)/r!
Ω 0.65614582291086 Real period
R 0.87774849087077 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 13398ba1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations