Cremona's table of elliptic curves

Curve 40425ck2

40425 = 3 · 52 · 72 · 11



Data for elliptic curve 40425ck2

Field Data Notes
Atkin-Lehner 3- 5+ 7- 11+ Signs for the Atkin-Lehner involutions
Class 40425ck Isogeny class
Conductor 40425 Conductor
∏ cp 256 Product of Tamagawa factors cp
Δ 2.6174024434544E+22 Discriminant
Eigenvalues -1 3- 5+ 7- 11+  6  2 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-44054088,-112279495833] [a1,a2,a3,a4,a6]
Generators [-31482:112467:8] Generators of the group modulo torsion
j 5143681768032498601/14238434358225 j-invariant
L 4.7334759272163 L(r)(E,1)/r!
Ω 0.05861047740563 Real period
R 5.0475999948541 Regulator
r 1 Rank of the group of rational points
S 0.99999999999988 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 121275ek2 8085f2 5775d2 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations