Cremona's table of elliptic curves

Curve 40698s1

40698 = 2 · 32 · 7 · 17 · 19



Data for elliptic curve 40698s1

Field Data Notes
Atkin-Lehner 2+ 3- 7- 17- 19- Signs for the Atkin-Lehner involutions
Class 40698s Isogeny class
Conductor 40698 Conductor
∏ cp 30 Product of Tamagawa factors cp
deg 80640 Modular degree for the optimal curve
Δ -2287431456282 = -1 · 2 · 36 · 75 · 173 · 19 Discriminant
Eigenvalues 2+ 3-  2 7-  2  4 17- 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-5811,186839] [a1,a2,a3,a4,a6]
Generators [-65:568:1] Generators of the group modulo torsion
j -29770823556657/3137766058 j-invariant
L 5.8584223488731 L(r)(E,1)/r!
Ω 0.79862228119174 Real period
R 0.24452203446041 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 4522g1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations