Cremona's table of elliptic curves

Curve 4095n2

4095 = 32 · 5 · 7 · 13



Data for elliptic curve 4095n2

Field Data Notes
Atkin-Lehner 3- 5- 7- 13- Signs for the Atkin-Lehner involutions
Class 4095n Isogeny class
Conductor 4095 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 1358291025 = 38 · 52 · 72 · 132 Discriminant
Eigenvalues -1 3- 5- 7-  0 13- -2  4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-347,-1654] [a1,a2,a3,a4,a6]
Generators [-14:24:1] Generators of the group modulo torsion
j 6321363049/1863225 j-invariant
L 2.5755286326528 L(r)(E,1)/r!
Ω 1.1314760817469 Real period
R 1.1381277404805 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 65520dt2 1365e2 20475r2 28665y2 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations