Cremona's table of elliptic curves

Curve 41262t1

41262 = 2 · 3 · 13 · 232



Data for elliptic curve 41262t1

Field Data Notes
Atkin-Lehner 2- 3+ 13- 23- Signs for the Atkin-Lehner involutions
Class 41262t Isogeny class
Conductor 41262 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 635904 Modular degree for the optimal curve
Δ -175331404677454272 = -1 · 26 · 32 · 132 · 239 Discriminant
Eigenvalues 2- 3+  0  2  4 13-  8  0 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-419508,-106679883] [a1,a2,a3,a4,a6]
j -4533086375/97344 j-invariant
L 4.4964898601904 L(r)(E,1)/r!
Ω 0.093676872088542 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 123786r1 41262u1 Quadratic twists by: -3 -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations