Cremona's table of elliptic curves

Curve 41400bs1

41400 = 23 · 32 · 52 · 23



Data for elliptic curve 41400bs1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 23+ Signs for the Atkin-Lehner involutions
Class 41400bs Isogeny class
Conductor 41400 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 55111680 Modular degree for the optimal curve
Δ 2.254569663776E+29 Discriminant
Eigenvalues 2- 3- 5+ -3 -5 -3 -6 -1 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-4393216875,109725501293750] [a1,a2,a3,a4,a6]
Generators [1063073646986360551:-4833521526252159396:31617447096061] Generators of the group modulo torsion
j 1286305460227974664900/30926881533278943 j-invariant
L 3.633527110433 L(r)(E,1)/r!
Ω 0.03138211262473 Real period
R 28.945845312288 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 82800bl1 13800g1 41400y1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations