Cremona's table of elliptic curves

Curve 41440g1

41440 = 25 · 5 · 7 · 37



Data for elliptic curve 41440g1

Field Data Notes
Atkin-Lehner 2- 5- 7+ 37+ Signs for the Atkin-Lehner involutions
Class 41440g Isogeny class
Conductor 41440 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 181440 Modular degree for the optimal curve
Δ -1522238544064000 = -1 · 29 · 53 · 73 · 375 Discriminant
Eigenvalues 2-  2 5- 7+  2  1  4 -6 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-34160,3082100] [a1,a2,a3,a4,a6]
Generators [100:810:1] Generators of the group modulo torsion
j -8610335038005128/2973122156375 j-invariant
L 9.0905240299917 L(r)(E,1)/r!
Ω 0.44963403230324 Real period
R 3.3696011188714 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 41440i1 82880ba1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations