Cremona's table of elliptic curves

Curve 42048ba2

42048 = 26 · 32 · 73



Data for elliptic curve 42048ba2

Field Data Notes
Atkin-Lehner 2+ 3- 73- Signs for the Atkin-Lehner involutions
Class 42048ba Isogeny class
Conductor 42048 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 20622352121856 = 216 · 310 · 732 Discriminant
Eigenvalues 2+ 3-  2  4 -4 -2 -2  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-63084,6094640] [a1,a2,a3,a4,a6]
Generators [4834:109865:8] Generators of the group modulo torsion
j 581130838372/431649 j-invariant
L 7.5532310395387 L(r)(E,1)/r!
Ω 0.67664002855737 Real period
R 5.5814249237117 Regulator
r 1 Rank of the group of rational points
S 0.99999999999954 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 42048ch2 5256h2 14016n2 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations