Cremona's table of elliptic curves

Curve 42483s1

42483 = 3 · 72 · 172



Data for elliptic curve 42483s1

Field Data Notes
Atkin-Lehner 3- 7- 17+ Signs for the Atkin-Lehner involutions
Class 42483s Isogeny class
Conductor 42483 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 48384 Modular degree for the optimal curve
Δ 60319784931 = 3 · 72 · 177 Discriminant
Eigenvalues  1 3-  3 7- -6 -1 17+  4 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-1307,13703] [a1,a2,a3,a4,a6]
Generators [497:36861:343] Generators of the group modulo torsion
j 208537/51 j-invariant
L 9.7127178333276 L(r)(E,1)/r!
Ω 1.0415231691764 Real period
R 4.6627468887689 Regulator
r 1 Rank of the group of rational points
S 1.0000000000012 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 127449bn1 42483a1 2499e1 Quadratic twists by: -3 -7 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations