Cremona's table of elliptic curves

Curve 426c1

426 = 2 · 3 · 71



Data for elliptic curve 426c1

Field Data Notes
Atkin-Lehner 2+ 3- 71+ Signs for the Atkin-Lehner involutions
Class 426c Isogeny class
Conductor 426 Conductor
∏ cp 15 Product of Tamagawa factors cp
deg 1440 Modular degree for the optimal curve
Δ -521611467264 = -1 · 29 · 315 · 71 Discriminant
Eigenvalues 2+ 3-  3 -1  3  2 -6  5 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-23007,1341682] [a1,a2,a3,a4,a6]
j -1346717656727992297/521611467264 j-invariant
L 1.5181284023803 L(r)(E,1)/r!
Ω 0.91087704142819 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 3 Number of elements in the torsion subgroup
Twists 3408g1 13632e1 1278l1 10650r1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations