Cremona's table of elliptic curves

Curve 4305m3

4305 = 3 · 5 · 7 · 41



Data for elliptic curve 4305m3

Field Data Notes
Atkin-Lehner 3- 5- 7- 41- Signs for the Atkin-Lehner involutions
Class 4305m Isogeny class
Conductor 4305 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 31154015025 = 32 · 52 · 72 · 414 Discriminant
Eigenvalues -1 3- 5- 7-  4 -2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-58835,-5497800] [a1,a2,a3,a4,a6]
Generators [616:13552:1] Generators of the group modulo torsion
j 22523270198753323441/31154015025 j-invariant
L 3.1303779855215 L(r)(E,1)/r!
Ω 0.30654244202888 Real period
R 5.1059454684363 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 68880br4 12915i3 21525d4 30135d4 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations