Cremona's table of elliptic curves

Curve 43260c1

43260 = 22 · 3 · 5 · 7 · 103



Data for elliptic curve 43260c1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ 103+ Signs for the Atkin-Lehner involutions
Class 43260c Isogeny class
Conductor 43260 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 76608 Modular degree for the optimal curve
Δ 4414106430720 = 28 · 314 · 5 · 7 · 103 Discriminant
Eigenvalues 2- 3- 5+ 7+  0 -3 -3  8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-4341,-45081] [a1,a2,a3,a4,a6]
Generators [-30:243:1] Generators of the group modulo torsion
j 35347047645184/17242603245 j-invariant
L 6.2501631534502 L(r)(E,1)/r!
Ω 0.61786264047144 Real period
R 0.72255578506112 Regulator
r 1 Rank of the group of rational points
S 1.0000000000015 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 129780n1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations