Cremona's table of elliptic curves

Curve 43350ce1

43350 = 2 · 3 · 52 · 172



Data for elliptic curve 43350ce1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 17+ Signs for the Atkin-Lehner involutions
Class 43350ce Isogeny class
Conductor 43350 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 103680 Modular degree for the optimal curve
Δ -109729687500 = -1 · 22 · 35 · 58 · 172 Discriminant
Eigenvalues 2- 3+ 5+  3 -6  7 17+ -5 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-3338,74531] [a1,a2,a3,a4,a6]
j -910904761/24300 j-invariant
L 4.2123754249539 L(r)(E,1)/r!
Ω 1.0530938562511 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 8670i1 43350di1 Quadratic twists by: 5 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations