Cremona's table of elliptic curves

Curve 43680f1

43680 = 25 · 3 · 5 · 7 · 13



Data for elliptic curve 43680f1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 7+ 13+ Signs for the Atkin-Lehner involutions
Class 43680f Isogeny class
Conductor 43680 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 14336 Modular degree for the optimal curve
Δ 119246400 = 26 · 32 · 52 · 72 · 132 Discriminant
Eigenvalues 2+ 3+ 5- 7+ -4 13+ -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-190,-800] [a1,a2,a3,a4,a6]
Generators [-9:10:1] [-8:12:1] Generators of the group modulo torsion
j 11914842304/1863225 j-invariant
L 8.0664101544285 L(r)(E,1)/r!
Ω 1.2988896925261 Real period
R 3.1051174710384 Regulator
r 2 Rank of the group of rational points
S 0.99999999999991 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 43680x1 87360fy2 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations