Cremona's table of elliptic curves

Curve 4389d1

4389 = 3 · 7 · 11 · 19



Data for elliptic curve 4389d1

Field Data Notes
Atkin-Lehner 3- 7+ 11- 19+ Signs for the Atkin-Lehner involutions
Class 4389d Isogeny class
Conductor 4389 Conductor
∏ cp 11 Product of Tamagawa factors cp
deg 2640 Modular degree for the optimal curve
Δ 12699136989 = 311 · 73 · 11 · 19 Discriminant
Eigenvalues  0 3-  1 7+ 11-  4 -6 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,1,-855,-8242] [a1,a2,a3,a4,a6]
Generators [-18:40:1] Generators of the group modulo torsion
j 69203793903616/12699136989 j-invariant
L 3.8471945307785 L(r)(E,1)/r!
Ω 0.89397615322864 Real period
R 0.39122403442237 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 70224bv1 13167e1 109725u1 30723n1 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations